The peaceful atom: part 1

Model
Video

Abstract

Part title from label. This program is the first in a three-part series on peacetime uses of atomic energy. A brief animated film reviews such concepts as neutrons and protons in a nucleus surrounded by electrons. There are 92 kinds of naturally occurring atoms, and changes can only be made to an atom by altering its nucleus. When the nucleus is split, it gives off energy. Mr. Strauss, the chairman of the Atomic Energy Commission (AEC), cites President Eisenhower's 1953 "Atoms for Peace" speech to the United Nations in which he suggests a world pool of atomic materials for peaceful uses, such as commercial electrical power. Dr. Hafstad, Director of the Reactor Development Division of AEC, discusses the costs and problems of harnessing atomic power. He points out that although our coal and oil supplies are dwindling and uranium supplies are vast, the cost of generating power from the atom is currently prohibitive. However, he predicts that, within the next five to fifteen years, as nuclear power is developed, its costs will fall.

Highlights of science for 1953

Model
Video

Abstract

Lynn Poole displays and discusses various symbols including: the skull and crossbones, horseshoe, swastika, barber pole, cigar store Indian, mortar and pestle, and chevron. Words can be symbols also. Latin, although not spoken today as a living language is still used in scientific communication. Latin began as the language of Rome and its vicinity, but through many conquests the Romans spread the use of Latin to the rest of Italy and what is now France, Spain, and North Africa. The Romans also conquered Greece, but since Green was also a highly developed literary language, the Greeks retained their own language. Latin also became the language of the Roman Catholic Church and medieval universities. Many scientific discoveries made during the Renaissance and the early modern period were given names in Latin. Even today Latin names such as Zea mays (corn) are used in scientific communication. Carl von Linné or Carolus Linneaus in Latin classified life forms in an orderly way using Latin terms. In his classification of kingdom, phylum, class, order, family, genus and species, a dog would be animal, chordata, mammalia, carnivora, canidae, canis familiarus. The Babylonians were fond of the number 60, which is retained today in 60 seconds in a minute, and 60 minutes in an hour, and even 360 degrees in a circle, which is 6 times 60. Weights and measures have been standardized so that they mean the same thing all over the world.

Dividends of science

Model
Video

Abstract

A film produced by the U. S. Navy lists some recent defense research with benefits to civilians: raising research animals in sterile conditions; discovering unknown properties of metals by super heating and super cooling; researching man's reactions to motion; studying nuclear collisions and cosmic rays as alternative sources of power; creating heat with aluminum solar reflectors; studying solar chromosphere and solar activity; and developing computers, the cyclotron, fluid dynamics, surgical techniques, etc. A film by the U. S. Air Force then shows the by-products of their research: rayon and nylon tires, fiber A weather resistant fabric, stereoscopic strip camera for mapping large areas quickly, electric blankets and space heaters, and ground control approach (GCA) used at airports. The final message is that defense research and engineering funds pay dividends by providing improvements in daily living.

Pattern for the future

Model
Video

Abstract

The program opens with film clips of the effects of the bombing of Hiroshima. Dr. Donald Andrews, chemistry professor at Johns Hopkins University, says that man has learned how to harness and control the atom's energy in such projects as atomic submarines and power plants, but we can not yet harness or control hydrogen, the newest source of nuclear power. To do that, machines need to supplement man's brain, offering "automatic control" or cybernetics. Examples of this include analog machines that regulate single functions, like James Watts' fly ball governor to control steam to the engine (demonstrated in animated film), thermostats that work on a feedback loop, servoengines that correct the course of a ship, and automated pilots on planes. Dr. Andrews then demonstrates thermodynamics, which studies the relations between heat and motion, and shows visible and audible evidence of a gas using dry ice. He defines entropy as the degree of randomness in a situation expressed by probabilities. Claude Shannon was the first person to see the parallel between entropy and the theory of information, which makes possible more complex automatic control devices. Self-regulating machines still need human monitoring, but digital information machines, or computers, can handle more complex situations, such as reacting to emergencies. A filmed narrative describes IBM's Model 705 equipment and statistics. Dr. Andrews says that computers will become the instruments of overall control. Cartoons show the statistics, promises, and fears of mechanization in business, industry, and government, concluding that by 1965, the United States, with a population of 190,000,000 will require a 50% increase in production. Dr. Andrews also predicts that in the future automatic control machines will make possible automatically steered cars, continuous television with an on-request program selector for shows in full color and 3-D, interplanetary transportation within 100 years, and modification of conditions on other planets by robots for colonization of space. The program concludes with a brief film of the launching of an artificial earth satellite placed in orbit by a three-stage rocket as America's contribution to the 1957-58 International Geophysical Year.